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Abstract

When studying structural vibrations resulting from a concentrated

source, many structures may be modelled as a finite beam excited by a point

source. Thi_ research explores the theoretical limit on cancelling the

resulting beam vibrations by utilizing another point source as an active

controller. Three different types of excitation are considered, harmonic,

random, and transient. In each case, a cost function is defined and

minimized for numerous parameter variations.

For the case of harmonic excitation, the cost function is obtained by

integrating the mean squared displacement over a region of the beam in

which control is desired. A controller is then found to minimize this cost

function in the control interval. The control interval and controller location

are continuously varied for several frequencies of excitation. The results

show that control over the entire beam length is possible only when the

excitation frequency is near a resonant frequency of the beam, but control

over a subregion may be obtained even between resonant frequencies at the

cost of increasing the vibration outside of the control region.

For random excitation, the cost function is realized by integrating the

expected value of the displacement squared over the interval of the beam in

which control is desired. This is shown to yield the identical cost function as

obtained by integrating the cost function for harmonic excitation over all

excitation frequencies. As a result, it is always possible to reduce the cost

function for random excitation whether controlling the entire beam or just a

subregion, without ever increasing the vibration outside the region in which

control is desired.



The last type of excitation considered is a single,transient pulse. A cost

function representative of the beam vibration is obtained by integrating the

transient displacement squared over a region of the beam and over alltime.

The form of the controller ischosen a priori as either one or two delayed

pulses. Delays constrain the controller to be causal. The best possible

control isthen examined while varying the region of control and the

controller location. It is found that control is always possible using either one

or two control pulses. The two pulse controller gives better performance than

a single pulse controller,but the effortto find the optimal delay time for each

additional controller pulse increases as the square of the number of control

pulses.
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Chapter 1

INTRODUCTION

With our increasing involvement in the area of aerospace technologies,

the need to control large, flexibleaerospace structures such as aircralt,space

stations, radio telescopes, or solar energy panels grows more important.

Unwanted vibrations in these structures may result in poor instrument

performance, noisy interiors,or even structural failure.

Traditional methods for controlling unwanted vibrations in a structure

used passive isolators or stiffened the structure such that itbecame more

difficultto excite. Passive isolators are useful only over a small frequency

band because they are tuned for a single frequency. Isolators also give poor

performance at low frequencies. Adding stiffnessto the structure results in

increased weight. The design of aerospace vehicles isextremely sensitive to

weight.

A novel approach to control, made possible by advances in the digital

computer, is active control. This method utilizes additional sources of

disturbance to cancel out the undesired disturbance. Suppressing vibration

in resonating structures by active control techniques isreceiving extensive

study I_. The plausibilityof actively controlling a structure modelled as a

linear system has been confirmed 7's.Very often,the structure to be controlled

may be modelled as a beam. It may be desired to control the flow of energy

through the beam or the vibration of the beam itselfdepending on the

application. In an infiniteor semi-infinite domain, the flow of energy in the
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beam is the quantity to be controlled. For a finite domain, controlling the

vibration of the beam itself becomes the problem. This thesis is concerned

with controlling the vibration of a finite beam.

If the beam is connecting some mechanical device to a supporting

structure, vibrations propagate through the beam into the structure. This is

a situation in which it is suitable to control the flow of energy through the

beam in an effort to isolate it from the structure without concern for the

vibration of the beam itself. It has been demonstrated that this flexural

power flow in beams modelled as infinite or semi-infinite can be attenuated

with a small number of actuators 912.

For finite systems, control is desired over some spatial region. Balas 1'1

describes a method for applying active control to distributed structures and

demonstrates the method with an example for a simply-supported beam. The

equation of motion for an undamped beam in bending is solved by the method

of eigenfunctions. This information is incorporated in a linear control

system, in which information from a sensor is used to estimate the modal

amplitudes and velocities. The steady-state controller produces control

proportional to the modal amplitudes by minimizing a performance function

via a single actuator. The first three modes of the system aider control are

found to be positively damped for the case of a transient excitation.

Meirovitch and Baruh 14 also control a simply-supported beam using a concept

referred to as Independent Modal-Space Control IIMSC). In this method, the

modes of the beam are controlled independently, so that one is effectively

controlling a set of independent second-order systems in parallel. This allows

for a relatively simple design and quick implementation for real time control.

The drawback to IMSC is that an actuator is necessary for each mode to be

2



controlled, and in some cases, the number of these can be quite large. The

large number of actuators makes the control system more expensive and may

cause design conflictsarising from positioning the actuators. Meirovitch and

Silverberg 15demonstrate an application of IMSC by modeling an aircraft

wing as a cantilever beam and controlling the flutter modes excited by a

constant velocity airflow.

All of the studies described above in the area of beam control use some

scheme to observe the motion of the beam which allows the actuator to

implement the appropriate control. The sensor provides feedback to the

actuator so that the vibrating beam is controlled without regard to the input

disturbance and the actuator continues to damp out the vibrations in the

beam after the source of disturbance has been discontinued. This thesis is

concerned with the best theoretical control possible, assuming complete

knowledge of the beam's mechanics a priori via the beam equation, and does

not require any scheme to estimate the state of the system. Since the

'eigenvalues and eigenvectors of the beam are assumed to be known, the only

additional knowledge that is needed for establishing optimal control of the

beam is any restrictions on the controller and the input excitation.

Three different cases of input excitation from a point source on the beam

are considered, and the resulting vibration is controlled by a second point

source linearly related to the excitation source. It isthis linear relation,

hereafter referred to as the controller,that is sought such as to give the best

control possible.

First the excitation is assumed to be steady-state sinusoidal. A measure

of control is defined by integrating the mean square displacement over some

length of the beam. The controller that best minimizes this quantity is then
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found and its performance demonstrated. The best controller is acausal but

because the excitation is sinusoidal and therefore completely predictable

under steady-state conditions, causality is not a constraint for this controller.

It is referred to as the unconstrained harmonic controller.

For the second case the beam excitation is assumed to be a stationary,

white-noise random process. The cost function minimized for this case is

obtained by integrating the expected value of the displacement squared over

some length of the beam. The controller that best minimizes this quantity is

then found and its performance demonstrated. This controller is referred to

as the unconstrained random controller.

The last type of excitation controlled is not a steady-state excitation as

in the case of the previous controllers sought, but a single, transient impulse.

The form of the controller is chosen a priori as either one or two delayed,

independent impulses. The delay time and weight of the control pulses are

chosen such as to minimize the squared displacement response integrated

over time and some beam length_

When the best controllers have been found for the previously mentioned

types of excitation, the results are compared for different configurations. The

controller location and the interval of control are varied as well the frequency

in the harmonic case.
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Chapter 2

SOLUTION TO BEAM EQUATION

y T
×

Figure 1. Simply supported beam, excited by a point source

In this chapter, the equations governing the vibration of a beam are

developed. The following chapters will use this theory when adding a control

force to minimize the vibration in the beam. Since the beam equation is

linear, only one point force need be used in developing the equations of

motion. Additional point forces are handled by superposition of solutions.

Given the simply supported, Bernoulli-Euler _e beam in Figure 1, the

governing equation for small, transverse vibrations is

r/i _fy(x,t_____))+ E1 ffy(x,t) _ f(x,t) ( 1)
Ox'

with 0 _ x < 1 and 0 < t. The bending stiffness is El, r_ the linear mass density,

and f(x,O the distributed force loading. It is convenient to nondimensionalize

equation (1) by utilizing the following dimensionless variables for space and

time:
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X

X"--

1
and t= t (1.1)

Now equation (I) becomes

O'y(x,t) f.O"y(x,t)
_)t2 _)x4

-f(x,t) (1.2)

where 0 _ x < I,0 < t and f(x,t)is a nondimensional loading force given by

14

f(x, t) = _-_ f(x,t)
(1.3)

For the point force shown in Figure I, and throughout this thesis

f(x, t)=f,(t)_(x,). The simply supported beam is subject to the following

boundary conditions:

y(O,t)=y(l,t)=O (2)

02y(O,t) _fy(1,t)

bx: bx2
-0 (3)

Equation (2) fixes the ends of the beam while equation (3) ensures that the

ends of the beam axe free to rotate by requiring zero applied moment.

The homogeneous equation of (1.2) can be solved to find the natural

vibration frequencies and associated beam modes or eigenfunctions17:

co. = (n _)2 n = 1,2, 3 .... (4)

#.(x) = sinnro¢ n = 1,2,3 .... (5)

The particular or "forced" solution can be obtained using the method of

eigenfunctions. Assume an expansion of the displacement in the form

y(x,t)= _. d_,(x)y,(t)
n-!

(6)
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where the generalized coordinate y,(t) for the nth beam mode is to be

determined. Substituting equation (6) into (1) and using the orthogonality of

the beam modes results in the following second-order uncoupled equations

al_er adding a modal viscous damping term _ :

a2y.(t) _ . dy.(t) 2

--dt2 +2_.% _ +oy.y.(t)=2_.(x.)f.(t)
(12)

Adding the damping at this point may seem unconventional, but it is a

common step in the structural field 16. Putting a damping term in equation (1)

would only serve to complicate finding the eigenvalues for the beam. A small

damping term is included here to prevent an infinite response of the beam at

resonance. In practice the actual modal damping value _ is almost always

determined experimentally TM.

Equation (12) can be solved to give

_0 t
y.(t) =2_,,(xs) dxh.(x)f.(t-x) (13)

where 1 -_._.,
h,,(t) = --e

(l)d,n
sinod,.t us(t ) (14)

and _d,. = _._fi-- _ (15)

The function h.(t) is the impulse response of the nth beam mode and us(t) is

the Heaviside function. Now with equations (6) and (13) the general solution

for the steady-state beam displacement can be written as a convolution

between the exciting force and the impulse response of the beam:

y (x, t) = fo"dx h,(x, x)fs(t - X) (17)

7



where
h,(x,'t) = 2 _, h,(x)_,(x,)_,(x)

rim|

The impulse response function h,(x,'c) is by definition the response of the

beam at position x due to an impulsive force at position x, at time x = 0.

For the ease of harmonic excitation, let the force be represented by

f,(t) = _R{_,e _'}

where f, is in general complex and 5R denotes the real part of a complex

quantity. In harmonic analysis the system is assumed to be in its

steady-state. In the steady-state, all quantities are oscillating at the same

frequency to, so all have representations similar to the exciting force in

equation (19). For simplicity, only the complex amplitudes (indicated by a

hat) will be utilized in the analysis, and it is understood that the physical

quantities are found by multiplying by e i" and taking the real part.

Substitute equation (19) into (17) to give

y(x, t) = (_d_ h,(x, _)_
J.._

Now itcan be seen that

(18)

(19)

y (x, to) = H,(x, to)f, (20)

where H,(to) is the Fourier transform TM of the impulse response of the beam.

The Fourier transform pair is defined by

H(to) = f-at h(t)e -i_' (21.1)

h(t)=I f_dtoH(to)e j'" (21.2)

Fourier transforming equation (18) and (14) gives

8



where

H.(x,_)= 2 _'. O?.(x,)_,,(x)H.((o) (22)
hi|

1
H.((o) = (23)

+2joxo. 

Equation (22) gives the transfer function between the displacement of

any point on the beam and the exciting force. Figure 2 shows this transfer

function for the displacement at x = 1/6 due to an exciting force at x, = 1/6 for

the first 3 modes. The damping was taken to be 1%. The response of the

modes is well separated and very peaked since the damping is small. The

phase shit_ of rc radians below and above the resonance frequencies is

expected. Note the phase change of rc between the first and second modes.

This phase change marks the frequency at which the displacement of the

beam due to the response of the second mode dominates the displacement due

to the first mode.

The closed form solution to the beam equation found in this chapter will

be used throughout the remaining analysis in this thesis. It is worthwhile to

point out, though, that the remaining analysis is not only applicable to a

simply supported finite beam. The eigenfunctions and eigenvalues of more

complicated systems can be found numerically by computer programs such as

NASTRAN, and utilized in the same manner as those of the beam found in

this chapter.

9
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Chapter 3

CONTROLLING HARMONIC EXCITATION

f, (t)

-_ hit)

X s Xc

x-O x=l

X

Figure 3. Controller configuration for harmonic excitation

In this chapter the force exciting the beam is assumed to be harmonic

with an rms amplitude of unity. A second force is applied to control the

steady-state vibrations of the beam. The arrangement of the exciting and

controlling forces is shown in figure 3. The primary source of excitation is

represented by f,(t) and the secondary force, used for controlling the beam, by

fc(t). The linear relation between the exciting and controlling forces defines

the controller. In the time domain this linear relation is written

fc(t) = f__d_ h (_)f,(t - "c) (24)

where h (t) is the impulse response of the controller.

For harmonic excitation,the convolution in equation (24) becomes

where H(00) is the Fourier transform 19of the controller impulse response h (t).
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The displacement of the beam due to a harmonic point source was found

in Chapter 2. Invoking superposition, the displacement due to both the

exciting force and the controlling force is

y(x, o)) = H.(x, o_)/. + l-lc(x, o))j?_ (26)

where
H,(x,¢.o) = 2 _ #.(x.)_.(x)H.((o)

n=l

Hcix,o) = 2
nml

(27)

and 1
H,,(o) - (28)

0.,] - co' + 2joxo. _

Using equation (25),equation (26) can be rewritten as

:(x, oo) = {H.(x, (o) + H (o_)H fix, 0o)}) _, (29)

Combining equation (27) and (29) gives the harmonic equivalent of equation

(6):

;(x, co) = _ ¢.(x);.(co) (29.1)
n=l

where _,,(_) =].[_,,(x.) +H(o)_.(x_)}H.(co) (29,2)

Note that equation (29) reveals that a controller can be found such that

the displacement is equal to zero at any single point x on the beam. This

controller is given by

H,(x,o)
H(o) =

H (x, co)

For harmonic excitation, the vibration of the beam will be represented

by the mean square displacement. Integrating the mean square

displacement over some length of the beam results in a cost function to be

minimized. Define

(30)

12



_ x 2
- dx y2(x, t) (31 )

!

where the bar denotes a time average. The controller that minimizes this

functional is the controller that reduces the mean square displacement,

integrated over the specified length of the beam, to the smallest value

possible with the given beam configuration. This point is stressed because, in

some eases, this may not be the quantity that is desired to be minimized, and

if not, the appropriate quantity should be defined.

Since squaring is not a linear operation, the real part of the complex

displacement must be taken before squaring:

y2(x, t) = 9_2{I y(x, (0) I e _t_' +0u._} (32)

where 0(x, 03) is the phase angle of f(x, 03). Now take the real part and square

it to give

Y2(X,t) =l y(x, 03) [2 cos2103t + 0(x, a))]

which can be split into a constant and an oscillating part by the trigonometric

double angle formula, resulting in

1 12
y2(x,t) = _l y(x,03) {1 +cos[203t +20(x,03)]} (34)

Taking the time average of equation (34) and substituting it into

equation (31) gives

1 (._2 12
_(03) -- 2Jx, dx l ¢(x, 03) (35)

Equation (29) can now be substituted into equation (35), giving the functional

to be minimized in terms of the sought controller function H(03):

13



*(co) = IH,(x, 0_)+ -T (35. l), dx H(CO)Hc(x, co)12 ]f" 12

Notice that I], 12/2 is the rms amplitude of the sinusoidal excitation which has

been aBsumed to be unity so equation (35.1) can be written

rl)(co) = IH,(x,co)+H(co)Hc(x,co ) 12 (36)

Equation (36) eat, be expanded in the form

q_(co) = B,(co) + B_((o)n (co) + B2(co)H'(co) + B3(co) IH(o_) 12 (37)

where
B,(m)- IH,(x, co)I_

B2(CO)---- co)HCfx,co)

Bs(co)=- dx IHe(x,co)12 (38)
I

Equation (37) cannot be minimized by taking the derivative with respect

to H(CO) and setting it equal to zero because the derivative is not defined for

complex conjugation. However, the derivative with respect to the real and

imaginary parts of H(co) is defined. Let

H(co)= R(co)+ jr(co) (39)

where R(CO) and I(co) are the real and imaginary parts of H(co) respectively.

Substituting equation (39) into (37) results in

_(o_) = B,(co) +B_(co) {R(o_) + jl(co)} +B2(co ) {R (co) - jI(co)} +Bs(co ) {R2(¢o) + 12(o))}

(39.5)

Now take the partial derivative with respect to R(o_) and/(co):

14



----R-R= B_ +B2 + 2B3R(co)

-_-t=j(B_-B_)+z_#(co)
(40)

Set these derivatives equal to zero and solve for R(CO) and l(co). Putting the

results back into equation (39) yields the optimal controller:

B2(co)
H(CO)= -_

B3(co)
(41)

Using this in equation (37) gives the minimum value of _:

I B2(CO)12

_(co) = B,(co) B3(co)
(41.1)

Now use equation (38) to rewrite (41):

2dx H,(x, *- co)He (x, co)

H (CO)=

f :'dx lHc(x, co) ,2

(42)

It may provide some insight to look at some special cases of equation

(42). It can be expanded over the modes by using equation (27):

H (co)-

nmlmml

(43)

If_) is to be minimized over the length of the beam, xl = 0 and x2 = 1. Because

the eigenfunctions are orthogonal over this interval, equation (43) reduces to

H(CO) -

IH.(co)12 d_.(x,)_b.(xc)

IH.(CO)12(h2.(x:)

(43.1)
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The frequency response of the controller in equation (43.1) is real, which

implies that the impulse response of the controller is even TM. This can be seen

by writing the inverse Fourier transform

and its complex conjugate,

h(t) = _ do_H(o_)e j_ (43,2)

xy_h (t) = _ do3H'(o_)e -j_' (43.3)

Since by equation (43.1), H(o)) =H*(oJ), it can now be seen from equation (43.3 _

that h(t) = h(-t). The impact of the even impulse function can be seen by

looking back to equation (24). To find the controlling force fc(t), future values

of the excitation force f_(t) are required since h(-t) _ O. For this reason the

controller is referred to as acausal. If the future values of the excitation

cannot be predicted, an aeausal controller cannot be used in a real-time

application. Obviously the future is predictable for harmonic excitation and

causality is not a constraint 2°.

Now that the controller that minimizes _ over the entire length of the

beam has been found, itis interesting to compare itwith the controller that

minimizes _ at a single point. This controller can be found by lettingthe

interval of minimization approach zero, i.e.]x2- x_ l-'#0 where the point of

interest is between xt and x2. In the limit,the integrands in equation (42) can

be treated as constant and taken outside of the integrations. This results in

- Ux,
t/(o))- (44)

I He(x, cO)I_

which simplifies to
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n (x, co)
H((o) = - (.45)

nc(x, co)

Equation (45) gives the optimal controller for minimizing the mean square

displacement at a single point on the beam. This agrees with the result of

equation (30) and from equation (29) itcan be seen that the mean square

displacement at this point is zero.

Another configuration that can be evaluated analytically isthat for

which the exciting and controlling force are collocated,i.e.

x,=xc_H,(x, co)= He(x,co).It can be seen from equation (42) that H(o_) = -l

which implies that h(t)=-5(0. Using the definition of h(t)given in equation

(24),

f¢(t) = - f__d_ _(_)f,(t - X) = -f,(t) (46)

which results in perfect control as expected when substituted back into

equation (36).

The best controller for harmonic excitation has been found and the

limiting cases of control checked. Now a digital computer will be used to

obtain limits on control for more general arrangements. Calculating the

amplitude of y(x,co)in equation (29.1) gives the envelope of the beam

displacement. This amplitude isplotted versus the non-dimensional length x

of the beam, before and after control, for several excitation frequencies in

figures 4-7. A table of modal coefficientsaccompanies each figure. The tables

reveal the effectof the controller on the magnitude and phase of the

individual modes. Although all results are presented without dimension, itis
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necessary to state that the phase will be expressed in radians throughout this

thesis, Only the first three modes are considered and the coefficient of

damping _ for all modes is taken to be 1%.

In both figures 4 and 5, the driving frequency is at resonance of the

second mode. In figure 4, • is being minimized globally or over the entire

length of the beam, 0 < x < l, while in figure 5, it is being minimized locally or

over a subinterval, 3/4 "_x _ 1. Because the displacement of the beam is

dominated by the response of a single mode, minimizing the cost function

locally results in very nearly the same global performance as when

minimizing globally.

The contributions of the individual modes when minimizing globally are

given in table 1. Before control, the second mode clearly dominates the

displacement. Notice the phase of the individual modes before control. These

are given relative to the exciting source. The third mode has a phase lag of

= 0 because it is being excited below resonance; the second mode has a phase

lag of = _2 because it is excited near resonance; the first mode has a phase

lag of = _ because it is excited above resonance. After control, the phases are

unchanged. The reason for this can be revealed by examination of equation

(29.2). When minimizing • over the length of the beam, H(o_) is real (see

eqn. 43.1), so it cannot affect the phase of the nth modal coefficient, y.(¢o).

Assuming a reference phase of zero for the excitation source, the phase of the

nth modal coefficient is
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0.02_

0.024

0.02

0.016

x"
0.012

0.008

0.004

Figure 4.

0.2 0.4 0 e 0.8

uncontrolled
X

controlled

Envelope of beam displacement, x, = 1/6, xc = 3/4, x, = 0,

Before Control After Control

Mode n 12.(_)I L2.(_) 12.(_)I Zf.(o_)

1 4.839E-04 -3.136E+00 1.076E-03 -3.136E+00

2 3.929E-02 -1.571E+00 1.749E-05 -1.571E+00
3 2.233E-04 -1.107E-02 3.600E-04 -1.107E-02

Table 1. Modal coefficients before and after control for figure 4.

I co. - co J

The modal phases are fixed before a controller is ever found! This explains

why the phases are unchanged after control in table I. The amplitude of the

second mode, which is at resonance, is greatly reduced. When minimizing

locallyin figure 5, the amplitude of the second mode was not as dramatically
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reduced. This allowed slightly better control within the control interval.

When the beam was excited at resonant frequencies of the other modes, the

beam displayed very similar behavior as that seen in figures 4 and 5.

0.028

0.O2_

0 .O24

0.022

0.02

0.018

0.01 e

o.ol,
>,

0.012

0.01

0.008

0.00e

0.004

0.002

0

Figure 5.

\
\

\

i

= 3/41Envelope of beam displacement, x, = 1/6, xc = 3/4, x,

X2 --" 1, 0.) ----0.)2

Mode n

1
2
3

Before Control

I

4.839E-04
3.929E-02
2.233E-04

-3.136E+00
-1.571E+00
-1.107E-02

ARer Control

I f.(o)) I

1.076E-03

2.572E-04
3.600E-04

-3.132E+00

-3.105E+00
-8.591E-03

Table 2. Modal coefficients before and after control for figure 5.

Figures 6 and 7 are the same as figures 4 and 5 described above except

for the driving frequency. For these cases, the driving frequency is between

the first and second natural frequencies of the beam. Minimizing q) over the
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length of the beam in figure 6 shows virtually no control at all. To

understand why this is so, use equation (29.1) to expand equation (35) over

the modes, resulting in

[ x2

which simplifies to

when calculating • over the beam length. This equation reveals that the

modal amplitudes I f,(co) ] must be independently controlled for global

reduction of _. The table of modal coefficients for figure 6 implies that

excellent control can be obtained if the coefficients of the first and second

modal amplitudes can be independently reduced, but this is not possible

because the controller H(co) has only one degree of freedom when minimizing

globally (see eqn. 43.1).

Between resonances, two modes are contributing on the same order to

the total response of the beam. Therefore, controlling one mode excites the

other even more, and this spillover limits the amount of control that is

possible when minimizing globally. When minimizing locally, the controller

uses spillover to achieve better control as seen in figure 7. Notice that the

beam displacement outside the subinterval of control is much larger than

before the control was applied. Table 4 gives the contributions of the

individual modes to the displacement envelope in figure 7. The amplitudes of

aU three modes are increased significantly, but the phase of the second mode

was changed so as to cancel the contributions of the first and third mode in

the interval of minimization which created a larger displacement envelope
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outside the interval of minimization. It willbe seen in figure 14 that moving

the location of the controller allows better control both inside and outside of

the minimization interval.

u

0.0016

0,0014

0.0012

0.001

0.0¢08

0.0006

0.0004

0.0002

0

Figure 6.

0 0.2 0.4 O.e 0.8 1

unoon(rolled
X

controlled

Envelope of beam displacement, x, = 1/6, xc = 3/4, xl = 0,

x2= l, co = 2.5col

Before Control After Control

Mode n I f,(co) I Lf,(co) I f,(co) I Lf,(co)

1 1.382E-03 -3.132E+00 1.120E-03 -3.132E+00
2 1.289E-03 -2.050E-02 1.488E-03 -2.050E-02
3 1.942E-04 -6.019E-03 1.758E-04 -6.019E-03

Table 3. Modal coefficients before and after control for figure 6.

Now that the beam displacement envelope has been examined for

several cases and the amount of reduction over the length of the beam seen, it

is interesting to study the reduction of _, which corresponds to the
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0.002

0.001

0

Figure 7.

o 0.2 0.4 oe 0.8

uncontrolled
X

controlled

Envelope of beam displacement, x, = 1/6, xc = 3/4, .r_ = 3/4,

x2= 1, m- 2.5m_

Before Control After Control

Mode n Iy.(co) I Ly.(co) IY.(co) I Ly.(co)

1 1.382E-03 -3.132E+00 8.614E-03 -3.061E+00

2 1.289E-03 -2.050E-02 4.226E-03 -3.052E+00
3 1.942E-04 -6.019E-03 7.019E-04 5.494E-02

Table 4. Modal coefficientsbefore and after control for figure 7.

performance of the controller. Without control, itcan be seen from equation

(37) that _ = B1(co).ARer applying control, ¢ is given by equation (41.1).

These two quantities are compared in figures 8-13.

Figures 8 and 9 give the performance of the controller versus frequency

for minimizing over the beam length, and over a subinterval of the beam

length, respectively. Figures 4-7 become single data points on these graphs.

The largest reduction of • is at the resonance frequencies in both figure 8 and
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9. Notice that there is a frequency between the modes at which no control is

possible. The exact frequency at which this occurs is a function of x, and xc.

At this frequency there is a balance of the modal responses in the region of

control, so spillover prevents any reduction of the cost function. The location

of Figure 9 shows that a greater reduction in • is possible when minimizing

over a subinterval of the beam length.

ca
-o

v

-10

-30

.40

-SO

.60

-70

-80

Figure 8.

1 r i . 1 I i" ' i

0 20 40 80

W

t

DO 100

uncontrolled

controlled

Effect of frequency on reduction of global cost function ¢,

x, = 1/6, x_ = 3/4, xt = O, x2 = 1

Figures 10-13 illustrate the importance of location of the controller if

that freedom is available. All of these plots show the perfect control when the

controller is collocated with the source. The beam is being driven at the

resonant frequency of-the second mode in figures 10 and 11. Note that

insignificant global control ispossible in figure 10 when the controller is

located at a node of the mode that is dominating the displacement, but figure

11 shows that local control is always possible at a resonance, no matter
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Figure 9.

20 40 O0 9O 100

_J uncontrolled

controlled

Effect of frequency on reduction of local cost function _,

x, -- 1/6, xc = 3/4, x, = 3/4, x2 = 1

where the controller islocated.

In figures 12 and 13 the driving frequency is between the first and

second natural frequencies. Ifone istrying to control globally, figure 12

shows that itis best to be as close as possible to the source. When

minimizing locally, a more complex relationship results, as shown in figure

13. Interestingly enough, the best control is achieved (for separated sources),

when the controller is located at the center. At this position the controller

cannot excite the second mode and as a result avoids spillover which allows

greater freedom in altering the first and third modes, and results in much

better control. This is the location of the controller in figure 14, in which all

parameters are identical to those in figure 7, except for the controller

location. It can be noted from table 5 that the second mode is not excited by

the controller, because the amplitude and phase are unchanged, aider control.
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Figure 10.

I I

0.2 0.4 0.6 0.8
uncontrolled

Xc
controlled

Effect of controller position xc on reduction of global cost

function _, x, = 1/6, x_ = 0, x2 = 1, o) = oh
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Figure 11.

i_ I I I

0.2 0.4 0.6 0.8

uncontrolled
Xc

controlled

Effect of controller position xc on reduction of local cost

function t_, xs = 1/6, x, = 3/4, x: = 1, co = oh
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The amplitudes of the first and third modes are increased and the phase of

the first mode is shifted by 7r, so that the optimal control is achieved by a

destructive interference between the modes in the region of minimization.

-50

-e0

-7040

-90

-100

-110

Figure 12.

0.2 0.4 0.8

XC

T 1

0.8

uncontrolled

controlled

Effect of controller position xc on reduction of global cost

function _), x, = 1/6, x, = 0, x2 = 1, co = 2.5o),
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-130

0

Figure 13.

0.2 0.4 0.6 o.s 1

Xc uncontrolled
controlled

Effect of controller position xc on reduction of local cost

function ¢, x, = 1/5, x, = 3/4, x2 = 1, co = 2.5(ol

Figures 7 and 14 illustrate control of the beam over an interval. In

figure 7 control was possible at the cost of a considerable increase in

displacement outside of the interval of minimization. In figure 14, much

better control was shown to be possible with smaller displacements outside

the interval of minimization with the proper location of the controller. For

these same two locations of the controller, it is interesting to examine the

effect of a continuous change in the interval of minimization. Comparing the

global cost function to that obtained when minimizing locally (over a

subinterval), gives an indication of the efficiency of the controller. To do this,

fix the right side of the interval at x2 = 1 and let 0 < xj < 1. The ideal controller

is then found from equation (41) and ¢ from equation (37).
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Figure 14.

0.001II

O.O_IQ

0.0014

0.0012

0.001

0.OOO8

O.O001

0.0004

0.0002

0

o 0.2 o.4 o.s o.o
uncontrolled

X
controlled

Envelope of beam displacement before and after local
minimization with optimal controller placement, 4; = 1/6,

Xc = 1/2, xl = 3/4, x2 = 1, co = 2.5(ol

Before Control After Control

Mode n I)_.(co)I L¢.(co) I_.(co)I L_.(co)

1 1.382E-03 -3_132E+00 1.441E-03 -2.339E-02

2 1.289E-03 -2.050E-02 1.289E-03 -2.050E-02
3 1.942E-04 -6.019E-03 3.925E-04 -1.451E-02

Table 5. Modal coefficients before and after control for figure 14.

Figure 15 shows almost no increase in the global cost function when the

interval of minimization is changed. This indicates that minimizing locally is

the same as minimizing globally. When any single mode dominates the total

response of the beam,'then minimizing the response of that mode results in

both a global and local minimum. The result is much different if the exciting

source is off resonance, as can be seen in figure 16. In this case, the global

cost function _ increases dramatically to allow greater minimization in the
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Figure 15.

g_ _

0.2 0.4 0.6 0.8

local,uncontrolled Xl global,uncontrolled
local,controlled ._ m global,controlled

Effect of interval of minimization on both the global and
local value of cost function ¢ before and after control,

= (o2, x. = I/6, xc = 3/4, x2 = 1

interval of concern. This is a result of spillover being utilized to reduce q)

locally. Ifthe controller is located optimally, this increase in the global cost

function _, due to spillover,can be minimized as shown in figure 17. It can

be seen that with the proper location of the controller,tremendous reduction

in • can be achieved locally without a significant increase in the global value

of O.

In summary, the best control of harmonic excitation over the length of

the beam is achieved when the displacement is dominated by one mode. Over

the length of the beam, the modes must be independently minimized and a

single controller can only independently minimize a single mode. If control is

desired only over a subregion, itis possible to control all modes over this

subregion if spillover outside of the region of control is allowed. In general,

the best location for the controller is as close as possible to the exciting
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Effect of interval of minimization on both the global and

local value of cost function • before and after control,

oo = 2.5(o I, x, = 1/6, xc = 3/4, x2 = 1
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Figure 17.

0.2 0.4 0.8 O.S

local, uncontrolled xl global, uncontrolled
local, controlled global, controlled

Effect of interval of minimization on both the global and
local value of cost function ¢ before and after control with

xc optimal, ¢o= 2.5(oj, 4; = 1/6, xc = 1/2, x2 = 1
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source. Results similar to these presented have been seen in experimental

control of a semi-infinite beam 9, which would seem to indicate that

comparable mechanisms are present for other types of boundary conditions.
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Chapter 4

CONTROLLING RANDOM EXCITATION

Y T
f,(t)

X s X c

x=O x=l

X

Figure 18. Controller configuration for random excitation

In this chapter the force exciting the beam is assumed to be a random

process with a constant power spectrum and a variance of unity. This type of

random process is also referred to as white noise because of its uniform

frequency content. A second force is applied to control the stationary

vibrations of the beam. The arrangement of the exciting and controlling

forces is shown in figure 18. The primary source of excitation is represented

byf,(t) and the secondary force, used for controlling the beam, by fc(0. The

linear relation between the exciting and controlling forces defines the

controller. In the time domain this linear relation is written

fc(t) = ;'_ dx h ('c)f,(t - "c) (47)

where h (t) is the impulse response of the controller.
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The displacement of the beam due to a single exciting force is given by

equation (17). By superposition, the total displacement is

fo'dX, fo'dX,y(x,t)= h,(x,'q)f,(t-x,)+ hc(x,x,)fc(t -xl) (48)

Using equation (47), this can be written

y(x,t)= fo'dx, h,(x,x,)f,(t-x,)+ fo'dXt hc(x,x,) f;dxh(x)f,(t-x,-x) (49)

For random excitation the vibration of the beam will be represented by

the expected value of the displacement squared. Integrating this quantity

over some length of the beam results in a cost functional to be minimized

with respect to the impulse response function of the controller. Define

f_(_dx _y_ (x) (50)

as this cost functional where, _(x) is the variance of the displacement which

is identical to the expected value of the displacement squared. To find _F in

terms of h (t), the impulse response of the controller, first square equation (49)

t) = fo"dxl dx_ h,(x, xOh,(x, x2)f,(t - xl)f,(t - _)y2(x,

f- (,l,+ dxd'(h('c)h(_') hc(x,xl)h_(x,'c2)f,(t-x 1 x)f,(t g2-_')

and then calculate the expected value,
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+2 f_dxh(x) £'dx, dx_R:(x, - x2-'_)h,(x,'c,)hc(x, x2)

f:dxd ;h('t)h('t") £"dx, d'r.2nf(x , - _ + x- x')hc(x, x,)hc(x, "r.=) (51.1)+

where Rf,(x) is the autocorrelation of the random process f,(t).

with unity variance, Rf,(x) = 8(x).

with respect to ra yields

-,,

f:dxdx" h ('l:)h (X') £'dX, h_(x, x,)h_(x, X, + X- 1:') (51.2)+

The cost functional _ is found by integrating equation (51.2) over some

length of the beam:

b,(O) + 2 f_d'ch(,)b=('O+ f'__d,d_"h(x)b,(x- "r')h(x') (53)

where

£ Cb,(x) m "dx, dx h,(x, x,)h,(x, _, - ,)

For white noise

Using this in equation (51.1) and integrating
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The Fourier transform of b_(x),b2(x),and b3(x)in equation (54) results in B_(o3),

Bz(o)),and B3(o)),respectively. These transforms have previously been

determined in equation (40). Now use the definition of the inverse Fourier

transform defined by equation (21.2) to find _F in the frequency domain:

W = I ;_.'dcoBl(o))

+ 2 f__ d x-_ f__ d o)_d o._ H (o)_)B2( o_)e _'*' +_)"

+ f__dxdx'-_ f__do_, do_ do._l (o_,)B3(o_)H(_)e_'" +_% ic'-_" (55)

Using flaeidentityTM

No_)=_ f__axej" (55.1)

equation (55) can be rewritten as

From equation (53), notice that B_(o_)H(o_) must be a real quantity, so

equation (55.2) can be rewritten as

_,- _ f'ao_ {B,(_)+Og(m)H(_o)+S2(co)H'(o_)+S3(co)IH(m)12} (56)

From equation (137) it can be seen that the integrand of equation (56) is *(o)),

so itcan be written

,e =_ f__a,,,_ ,,,) (57)

It is apparent from equation (36) that _)(to) is an even function, so equation

(57) can be written
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W = 1 fo*'dco _(co ) (58)

With equation (36), equation (58) can be expanded into

f" l fo'dColH,(x,co)+H(co)Hc(x,co)12
_F=

, dx (59)

which, when compared to equation (50), gives

_ (x ) = l fo'd col H_,(x, _) + H (co)H,.(x, _) l2 (60)

To minimize tF in equation (58), _(o_) must be independently minimized

at each value of to, because the function _(o_) is, by definition, positive for all

co. This independent minimization has already been accomplished in chapter

3. The unconstrained controller that gives the minimum vibration for

harmonic excitation is also the best unconstrained controller for random

excitation! After some thought, this fact is not so surprising. Without the

constraint of causality, the impulse response of the controller is defined for

--o. < t < o.. This has the effect of letting the controller "know" the input

excitation before it excites the beam. Thus the random input is not random

as seen by the controller, but deterministic. The infinite limits in equation

(47) illustrate this mathematically. In this light, it makes sense that the

optimum controller is the same for both random and periodic excitation.

Now that the unconstrained controller for random excitation is known,

the performance of the controller will be examined. It is interesting to note

that the special cases outlined in chapter 3 also hold for the case of random

excitation; perfect control is achieved when the exciting source and controller
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are collocated, and when minimizing the response at a single point on the

beam. Because these cases result in ¢(_) ffi 0 for all values of ¢o, equation (58)

verifies that the same holds for controlling random excitation.

For more general cases, the square root of equation (60) gives _(x), the

deviation of the beam displacement. It is plotted against x to show a

statistical beam displacement envelope in figures 19 and 20. In all plots, only

the first three modes are considered and the coefficient of damping _ for all

modes is taken as 1%. In figures 19 and 20, the vibration is being minimized

from 0 < x < 1 and from 3/4 < x < l, respectively. The first mode dominates the

uncontrolled displacement envelope in figure 19, but this is hardly surprising

since the relative dominance of the first mode was seen in figure 2. These

results are similar to those realized before for harmonic excitation.

Compared to the global minimum, better control was achieved in the region

of minimization, at the cost of less control outside of the region of

minimization.

The vibration of the beam over the interval of minimization is

represented quantitatively by P in equation (58). In figures 21 and 221 • is

plotted versus the position xc of the controller. Perfect control is achieved for

collocation of source and controller. When minimizing over the length of the

beam in figure 21, the reduction in _Flessens as the controller position

coincides with nodes of the second and third modes. This is a result of the

requirement that each. mode be minimized independently for global reduction

of _F,and a mode cannot be controlled ifitcannot be excited. The

requirement to minimize the modes independently can be verified by

substituting equation (46.3) in equation (58) to expand _ over the modes:
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Figure 19. Deviation of beam displacement, oy(x) before and after

globa I control, x, = 1/6, xc = 3/4, x_ = 0, x_ = _

• 0.2 0,4 ' _ uncontrolled
X - controllecl

Figure 20. Deviation of beam displacement, Oy(X) before and after
local control, x, = 1/6, .L = 3/4, xt = 3/4, x2 -- L
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(61)

Even though the controller cannot control a mode that it cannot excite

because of actuator location,itcan stillcontrol the remaining modes, so

figure 21 shows a minimum of 15 dB in the reduction of the cost function _F.

This is quite different than what was observed in the case of harmonic

excitation, where some controller location always existed for which no control

was possible.

-4OA
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Figure 21.

0.2 0.4 O.e
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1 T

0.8

uncontrolled

controlled

Effect of controller position xc on global cost function _,

xs = 1/6, x, = 0, x2 = 1

When minimizing over a subinterval of the beam, figure 22 illustrates

that locating the controller near a node can result in improved control.

Figure 24 illustratesthis improved control by plotting the deviation of the

displacement ai_r locating the controller at xc = .49. Because of the modal

coupling in a subinterval, the first and third modes are utilized.to locally
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control the second mode.
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The effect of the interval of minimization on the reduction in _F is seen in

figure 23. Greater control is possible as the interval of minimization is

decreased. The global value of • is also reduced when controlling locally for

all values of the lower limit of minimization.
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Deviation of beam displacement, Gy(x) after optimal

placement of controller, x, = 1/6, xc = .49, x_ = 3/4, x2 = I

The performance of the unconstrained controller has been examined,

and it establishes that excellent control is possible over a broad frequency

bandwidth for random noise excitation using only a single controller.

Regardless of the interval of minimization, a reduction in the global beam

vibration is always achieved. This differs from the results of chapter 3

where, for harmonic excitation, an increase was observed in global beam

vibration when minimizing locallyfor certain arrangements of exciting

frequency and controller location. The best location of the controller for

global control was shown, in general, to be as near the exciting force as
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possible, while avoiding node locations of the modes to be controlled because

each must be controlled independently. When controlling locally, however,

positioning the controller at a node location can result in improved control

because of the local interference between the modes.

The controller was revealed to have the same transfer function as the

controller used for harmonic excitation. This controller is not constrained by

causality which may limit its use depending on the application, so a

controller constrained by causality is also of interest. The discussion of the

constrained random controller is taken further in appendix A.
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Chapter 5

CONTROLLING TRANSIENT EXCITATION

T
f s(t)

I h(t)

X s X c

x=O x=l

X

Figure 25. Controller configuration for transient excitation

In this chapter the force exciting the beam is assumed to be an impulse

function. Two different controllers are used to control the resulting transient

vibrations. The first controller uses one impul'se delayed in time to minimize

the vibrations, whereas the second controller uses two impulses, both delayed

in time. The delays constrain the controller to be causal. The equations will

be formulated for the two pulse controller, allowing the single pulse

equations to be found by letting the amplitude of the second controlling pulse

vanish.

The arrangement of the exciting and controlling forces is shown in figure

25. The primary source of excitation is represented by f,(t) and the secondary

force, used for controlling the beam, by f_(t). For a single pulse excitation and

two pulse control, these can be written

f,(t) = f, oS(t) (69)
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fc(t)-fc,_t-t,)+f_2g3(t-t2) t2>t , >0 (70)

The linear relation between the exciting and controlling forces defines

the controller. In the time domain this linear relation is written as

f2d.c h(x)f,( t - _) (71 )f_(t)

where h (t) is the impulse response of the controller. Substituting equations

(69) and (70) into (71) gives

h (t ) = htS(t - t,) + h2_(t - t2) (72)

where fc,

hi f,o

fc:
h2 =f_o (73)

The displacement of the beam due to a single exciting force is given by

equation (17) where h,(x, t) is defined as the response of the beam at position x

due to an impulse located at x,. By superposition, the total displacement is

y(x,t)= f_ axh (x,x)f (t-x) (74)

where hc(x, t) is defined as the response of the beam at position x due to an

impulse located at x_. Using equations (69) and (70), this can be written,

y(x, t) = f, oh,(x, t) + f_,h_(x, t - t,) + fc2h_(x, t - t2) (75)

Normalize by the amplitude of the exciting impulse by defining

ys(x, t) - y(x, t____A) (76)
f,o

which allows equation (75) to be written

ys(x , t) = h ,(x , t) + hlh c(x , t - t _) + h2h _(x , t - t2) (77)
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In the caseof a single pulse controller, h2=0 and equation (77) is left with

two degrees of freedom, ht and h. Similarly, the two pulse controller has four

degrees of freedom. The four degrees of freedom will be reduced in the

following analysis to three by letting the time between the two pulses be fixed

at some positive constant a such that ct = t2 - h.

A measure of the transient vibrations resulting from the initial impulse

will be formed by squaring the displacement and integrating over all time.

Integrating this quantity over some length of the beam results in a cost

function to be minimized with respect to the impulse weights and delays of

the controller. Define

A - dx dt y2(x, t) (78)
!

To find A, first square equation (77):

y_(x, t) =hi(x, t) + 2h_hs(x, t)hc(x, t - tt) + 2h2hs(x, t)hc(x, t - t2)

2 2 2 2

+h_hc(x,t-&)+2hlh2hc(x,t-g)h_(x,t-t2)+h2hc(x,t -t2) (79)

Substituting equation (79) into (78) gives the cost function to be minimized

explicitly:

A = A t + 2h_A2(t_) + 2h_(t2) + h_A3(t 1,tt) + 2h_h_A3(g, t2) + h_A3(t 2, t2) (80)

where

A_ _- th x,t)

A3(_, t2) -_
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It can easily be seen that the definitions in equations (81) are the same as

those already defined by equations (54) where A_ = b,(0), A2(x0 = b2(xl), and

A3(x_,x_) = b3(x:- x,) = b3(ct). Now equation (80) may be written as

A = b,(O) + 2h,b2(t,) + 2h2b2(t2) + h_b3(0 ) + 2hth:b3(ct) + h22b3(0) (82)

To find the minimum value of the cost function A, calculate the partial

derivatives with respect to the unknowns ht, h2, and t,. Setting these

derivatives equal to zero yields stationary points, which are necessary

conditions for a minimum. The derivatives are

_ =2htb3(0 ) + + (83)2h:b3(o0 2b2(tt )

0A
Oh2 =2h_b3(o_ ) + 2h2b3(0) + 2b2(t2) (84)

/3A

-_ =2h,b 2(tt) + 2h2b'2(t2) - 2hlh2b'3(o_) (85)

Setting equations (83) and (84) equal to zero yields the linear system

b3(0)

b3(a)

which can be solved to give

b3(O)J - b2(t2)_
(86)

b2( t,)b3( O) - b2( t2)b3 (ot)

h, = b_(O) - b32(ot) (87)

b2( t2)b3( O) - b2( t Ob3( tx)

h: = b_(O) - b_(ct) (88)

After setting equation (85) equal to zero, equations (87) and (88) can be

used to write a single equation in q whose roots are stationary points of A.

However, the equation is transcendental, with infinitely many roots.

Moreover, it is not clear which root results in the global minimization of the
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cost function A. An easy way around this problem is to substitute equations

(87) and (88) into equation (82) to give A as a function of tl and then to graph

the cost function so that the global minimum may be identified visually. This

is done in figures 26 and 27.

In figure 26, the cost function A has been minimized over the entire

length of the beam, or globally. Both the one and two pulse controller achieve

their minimum values at nonzero delay times. The minimum for the one

pulse controller is reached at t_ = T_/2 = .318, where T, is the period of the first

eigenvalue, or eigenfrequency, of the beam, equal to 2/_ = .637. The delay

times at which no control is possible for a single pulse controller correspond

to the instants at which the energy in the first mode is all potential. Any

attempt to control the beam with a single pulse at this instant only increases

the energy in the first mode. It is possible to control the higher order modes

at these instants, but spillover into the dominant first mode (see figure 2)

prevents any reduction of the cost function.

To better illustrate this mechanism, consider a single degree of freedom

spring mass system in an excited state. As the mass reaches the system

equilibrium position its energy is purely kinetic and an impulse can be used

to completely stop the subsequent motion. This is in contrast to the time at

which the rnA_rirnl_n displacement is reached and the energy of the system is

purely potential. At this time, the best controlling pulse would be none at all,

because striking the mass with an impulse can only serve to increase the

energy in the system. The situation is more complicated for multiple degrees

of freedom but the mechanisms are the same.
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The single degree of freedom example in the last paragraph explains

why the fundamental period of the oscillating cost functions in figures 26 and

27 are half the period of the first beam mode, but there are several other

trends that can also be explained. One of these is the upward trend of the

local minima for the cost functions. Recall that the plotted cost function is

integrated over all time (see eqn. 78), but it is an impulse that is being

controlled, so the major contribution to the integral comes from the time

interval immediately following the exciting impulse. Thus, to minimize the

cost function it is, in general, better not to delay control too long, because

aiter the exciting impulse has decayed away, there is nothing leit to control

and the oscillating cost functions will have converged to the uncontrolled

level.

Again looking at the single pulse control in figure 26, it is seen that the

global minimum for A occurs at a delayed value for t_ rather than a zero

delay, and the fourth minimum results in better control than the third. It

seems that waiting later can result in better control of the beam. This is true

because of the interactions of the beam modes. The best delay at which to

control is the delay at which the spillover from controlling the first mode

helps control other modes as well. This phenomenon appears to be a strong

function of the controller location as seen in figure 28, in which the optimal

delay time tl for the global cost function is plotted against the controller

location. The changes in optimal delay times are discrete jumps that occur

when the controller location is such that the controller spillover couples with

the beam modes in a way to make an alternate delay time more desirable.
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In contrast to the single pulse controller, the two pulse controller in

figures 26 and 27 always results in some reduction of the cost function. This

results from the controller being able to offset the spillover into the first mode

with the second pulse while controlling higher order modes. The amount of

control possible is highly dependent on the time a between the two pulses.

For increasingly small values of a, the cost function ceases to show any

noticeable changes after values smaller than a = T4100, but better control is

possible for greater choices of a. The increased complexity of the cost

function for the two pulse controller will be discussed later.

It is worthwhile to comment on the similarity of figures 26 and 27 since

some may be surprised that a global reduction would yield very nearly

identical values of flto minimize the cost function A. This is a result of the

transient nature of the excitation. For transient excitation, no §teady
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opposition to a localdisturbance can be developed. For this reason, the global

and localmlnimlzations yield very nearly the same results, as will be shown

in later plots.

Now itis of interest to note the controller weights h_ and/h that yield the

control shown in figures 26 and 27. Figures 29 and 31 show these weights

corresponding to the global control in figure 26, and figures 30 and 32 show

those for the localcontrol in figure 27. All of the weights oscillatewith the

period of the firstbeam mode.

For a = T_/4in figures 29 and 30, the firstweight of the two pulse

controller is essentially the same as that of the single pulse controller;the

second weight is the same also except that itis delayed by the time lag a

between the control pulses. The peak values correspond to the optimal delay

times in figures 26 and 27 and the zero crossings coincide with the delay

times at which no control is possible.

The amplitude hl of the single pulse controller at t_= 0 can be largely

attributed to the effectof the excitation source and controller locations on the

firstmode. To better see this,assume the beam is represented by itsflrst

mode only. Minimizing the cost function A in equation (78) with respect to

h_(tl= 0) results in h_= sin(r_x,)/sin0_xc).For the locations of source and

controller in figure 29, h_=sin(rd6)/sin(3rd4)=I/N_-= .707. The actual value of

.66 read from figure 29 is lower because there ismore than one mode to

control and stopping the firstmode completely by letting h_= -I/,_-would

result in spillover into the remaining modes, resulting in less than optimum

control.
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In view of the slight difference between figures 26 and 27, it is no

surprise that figure 30 is very similar to figure 29. The increased importance

of the higher order modes in figure 30 accounts for the increased distortion of

the oscillating values of the weights.

Now look at the case in which the time a between the controlling pulses

gets small. The weights become large and most olden opposite in sign, as

shown in figures 31 and 32 for a= TI/IO0. The "dipole" nature of the pulses

allows control of higher order modes while limiting spillover in the first mode.

The peak values in these figures indicate the delays at which the single pulse

controller could not achieve any control. This two pulse controller does

achieve some control (less than 3 dB globally) at these peaks as seen in

figures 26 and 27, but larger control pulse weights are needed. The

magnitudes of these pulse weights will be associated with the effort of the

controller and are given in figures 31 and 32. The amplitudes are over ten

times the amplitudes for more widely spaced controlling pulses that not only

need much less effort but result in better control as well.

The best control results near the zero crossings of the weights in figures

31 and 32. Here the two weights sum to that of the single controller as given

in figures 29 and 30. This agrees with the results seen in figures 26 and 27,

where all configurations of one and two pulse controllers gave identical

performance at the value tl = Tt/2. Thus, in return for somewhat increased

performance over a single controller pulse, the two pulse controller requires

significantly more effort if a <<I.

Figure 26 showed a large change in the optimum delay time tl of the two

pulse controller when the time a between the control pulses was changed. To
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better exhibit this relationship, a contour plot of the reduction in the cost

function A is shown in figures 33 and 34 with t_ and a as independent

variables. For _ = 0, the determinant of the linear system in equation (86) is

zero because tl = t2, so results for the single-pulse controller are plotted along

the ordinate for this degenerate case.

There is more to be seen in figures 33 and 34 than that they are complex

and contain many local minima for A. Both figures contain strong contour

lines that can be explained with the help of figures 26 and 27. The diagonal

contours are centered about the two lines, t_+ a = T_/2 and t_+ ct = 3T_/2, which

correspond either to the first or second pulse acting at the minima seen in

figures 26 and 27 for the single pulse controller. The strong vertical contours

are located about the lines tt = TI/2 and t_ = 3T_/2 which again correspond to the

minima seen in figures 26 and 27. Along these contours, the second pulse has

virtually no impact at all, indicating that its amplitude must be near zero.

The global minima in figures 33 and 34 occur near the origin and show a

reduction in the cost function A of more than 16 dB both globally and locally.

The minima of A are at (t_, c_) = (.05, .12), and (t_,a) -- (.07, .11) in figures 33 and

34, respectively. The location of the minimum is caused by an interaction

between the modes. Note the general spreading of the contour lines as tl and

a increase. This can be understood by recalling again that the cost function A

is obtained by integrating over time, so that, in general, the longer the

controller delays the controlling pulses, the less reduction is possible.

Recall that the contours in figures 33 and 34 are functions of the

controller configuration. To study the effect of controller location and

interval of minimization, it would be necessary to regenerate and search

contours such as figures 33 and 34, for each individual locatiofi of the
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controller and interval of minimization, so that the values of tland a that

result in global reduction of the cost function A would be found. Because this

is time consuming, a isheld fixed in figures 35-39, and the optimum tlsought

along the line a = a_d. One should keep in mind though, that the

quantitative control is also a function of the time c_between control pulses.

Figures 35 and 36 show how the location of the controller affectsthe

quantitative control. Just as in the case of controlling a harmonic exciting

source in chapter 3, collocation of source and controller results in perfect

control. It can be seen from figures 35 and 36 that substantial control is

possible for any location of the controller in the case of global minimization of

A, but, in general, itis best to move the controller as close as possible to the

exciting source. Again a very subtle difference is seen between the shape of

the global and local curves. This is seen throughout the plots in this chapter

and reinforces the earlier statement that minimizing A locallyin the case of

transient excitation also results in very nearly a global minimum as well.

Now that the effectof controller location on A has been illustrated,itis

of interest to see at what effortthe control was gained. The effortcan be seen

by examining the weights hl and/_ of the control pulses. The weights

corresponding to the global control in figure 35 are shown in figure 37 and

the weights corresponding to the local control in figure 36 are shown in figure

38. When the controller location nears the ends of the beam, the weights get

large because poor modal coupling makes it increasingly difficult to excite the

beam modes. The sudden changes in magnitude of the weights is due to a

change in the optimum delay time tl for the initial controlling pulse. These

jumps were seen earlier in figure 28. As the controller position is changed,
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the optimum value for t_ will change in discrete jumps. Correspondingly, the

weight of the controller pulses will also change in discrete jumps. The sign

change of the single pulse controller results from the change in sign of the

modal eigenfunctions as the controller location changes. The second mode

dominates this change in sign, which causes the jump to be near x = 1/2 which

is the location of the sign change for the second modeshape. When either of

the two weights hi or h: equals zero, there is no advantage to using a two

pulse controller. These regions match the regions in figures 35 and 36 where

no further reduction in the cost function A was possible with the two pulse

controller.

The consequence of changing the controller location xc was seen in

figures 35 and 36. The location xc has a major impact on the amount of

control possible. Figure 39 shows that changing the interval of minimization

does not have any dramatic results on the amount of control possible.

The effect of changing the controller location, interval of minimization,

delay time of the controlling pulses, and the time between the control pulses

have been observed. The performance was measured by the reduction in the

cost function A. Recall that A is integrated over time and the interval of

minimization. To better understand physically how the cost function is being

reduced, define a spatial energy density function such that

6O



Figure 37.

I

I 1 I 1 I 1

0.2 0.4 o.e oe 1
hi , 1 pulse

xc ........... _ , 2 pulse
............ h2 , 2 pulse

Effect of controller position on weight of control pulses for
global control, x, = 1/6, x, = 0, x2 = 1, a = T_/4

2

@ 1

!

o
c

-2

-3

0

Figure 38.

0,2 0,4

//li

/"

i,,//

"_1........./

\

I

I r" I I I

0.6 0.8

hl , 1 pulse
Xc ........... hi , 2 pulse

............ hit, 2 pulse

Effect of controller position on weight of control pulses for
local control, x, = 1/6, x, = 3/4, x: = 1 a = T,/4

61



where

-10

_i_dx EyA = (x)
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The function Ey(x) shows where on the beam the reduction in the cost

function A is taking place. It is plotted in figure 40 for both global and local

control by the one and two pulse controllers. The delay times t_ and a in

these plots are the optimal values as selected from figures 33 and 34.

The plots for the single pulse controller overlay one another and are

indistinguishable. The interval of minimization has virtually no effect on the

control possible by a single pulse. Looking back at figure 39 confirms that,

regardless of the interval of minimization, the same global control is achieved
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with a single pulse controller. This is not true of the two pulse controller. It

gives better control in the interval of minimization at the cost of giving up

some control outside the interval.

From figure 40 one gains a feel for the location on the beam at which the

cost function is being reduced. A more physical demonstration of how the two

pulse controller achieves better control than the single pulse controller is

evident in figures 41 and 42. These show time histories of the beam

displacement y(x,t)at a single position on the beam before and after control.

The two pulse controller again uses the optimal values for tland a as selected

from figures 33 and 34.
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Figure 41.
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Time response of beam before and after control at position

x = 3/4 using a single pulse controller, x, = 1/5, x, = 0, x2 = l,

tt = T_I2
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Figure 42.
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Time response of beam before and after control at position

x = 3/4 using a two pulse controller,xs= I/6,x,= 3/4,x2= l,

t_= .06,co= .12
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Figure 41 gives the displacement before and ai_r a single pulse

controller is used. The before and after control plots are identical until the

controller strikes at delay time t_.The firstmode is virtually eliminated from

the time response after application of the controller. Notice the delay of the

controller corresponds to t_= T_/2which is a time of zero displacement of the

firstorder mode. At this instant the energy in the firstmode is entirely

kinetic which, as mentioned in the discussion of figures 26 and 27, marks the

best time to strike the beam with a controlling impulse since the firstmode

dominates the displacement.

The two pulse controller in figure 42 strikes sooner than the single pulse

controller in figure 41 in an attempt to reduce the displacement of the first

beam mode in itsinitialhalf cycle. This is accomplished, but at the cost of

slightly increased oscillationsfollowing the control pulses as compared to the

single pulse controller.

In summary, itis always possible to control the transient vibration of

the beam with both one and two impulses. The two impulse controller results

in increased performance, as seen in figure 40, but at the cost of increased

effortin the determination of the delay time and weight of the second pulse.

To make the weight of the second pulse simple to determine, the time ct

between the pulses can be fixed as itwas for most figures in this chapter but

this offers only a slight improvement over the single pulse controller. Thus,

for the two pulse controller to offer significantimprovement, as was the case

in figure 40, itis necessary to find the optimal delays for the firstand second

pulse independently. This is a point of difficultyfor this method. Roots of a

transcendental equation yield infinitelymany choices for the delays t_and
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that result in stationary points of the cost function A, but there is no clear

method for quickly determining the values of tl and _ that result in the global

minimum.

66



Chapter 6

SUMMARY

A controller to optimally reduce the vibration of a finite beam has been

found for each of the three cases of excitation considered. For each controller,

the performance was illustrated for a variety of configurations and the

important results will now be summarized.

For harmonic excitation the optimal controller is seen to have two

degrees of freedom, the amplitude of the controlling force and its phase

relative to the exciting force. When minimizing the vibration globally,

however, the only degree of freedom of the controller is the amplitude of the

controlling force, because the orthogonality of the modes requires that each

mode be minimized independently. Perfect control is possible at any single

point on the beam, but when minimizing the vibration over some length of

the beam, the only way to achieve perfect control is to collocate the excitation

source and the control source. For separate locations, the best control exists

when the excitation frequency is near resonance of one of the modes.

Between the modal resonances, the quantitative control diminishes, until no

control is possible at a discrete frequency which is a function of excitation

location, controller location, and the interval of minimization. This was true

when minimizing both locally and globally, but the frequency band in which

the control was diminished, was much broader when minimizing globally.

This bandwidth in which little control is achieved should not be a foremost

concern though, because it always occurs at frequencies where the response

of the beam is at a minimum and it is not as important to control the
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vibration. The location of the controller should generally be as close as

possible to the excitation source. For global control, avoid locating the

controller at a node of a mode to be controlled;when controlling locally,

locating the controller at a node of a contributing mode can be advantageous

because controller spillover into that mode is eliminated.

For random excitation, the ideal controller was found to be the same

controller that best minimizes the vibrations resulting from harmonic

excitation. The performance of the random controller was then shown to be a

frequency average of the performance of the harmonic controller,resulting in

excellent control of random excitation using only a single controller. Perfect

control is possible at any single point on the beam, but when minimizing the

vibration over some length of the beam, the only way to achieve perfect

Control is to collocate the excitation source and the control source. The best

location of the controller for global control was shown, in general, to be as

near the exciting force as possible, while avoiding node locations of the modes

to be controlled, because each mode must be controlled independently. When

controlling locally,however, positioning the controller at a node location can

result in improved control because of the coupling between the modes.

Regardless of the interval of minimization, a reduction in the global beam

vibration is always achieved. More control is gained as the interval of

minimization is reduced, but not at the cost of increasing the global energy.

For transient excitation,two different controllers were found and

compared. The firstcontroller used a single impulse delayed in time to

minimize the vibrations, whereas the second controller used two impulses,

both delayed in time. The delays constrain the controller to be causal. Ifthe

time between successive pulses was fixed for the two pulse controller,it
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resulted in virtually no improvement over the single pulse controller. The

transient nature of the excitation prevents the controller from being able to

zero the vibrations at a single point on the beam as was possible for

steady-state excitations. Perfect control is achieved if the excitation force and

controlling force are collocated. Changing the interval of minimization had

no effect on the single pulse controller, and only a slight effect on the two

pulse controller; Both controllers exhibited excellent control over all intervals

of minimization. The best location for the controller was again as close as

possible to the excitation source.

The highlights on controlling beam vibrations resulting from three types

of excitation have been presented. The study was by no means exhaustive,

and there are several interesting topics that could be examined further as

future research.

In the case of both harmonic and random excitation, the controller was

found to be have the same acausal transfer function. To implement an

• acausal controller, future values of the excitation source are required. This is

not a problem in the case of harmonic excitation, since all future values are

exactly known, but exact future values of a random excitation are generally

not available. This requires the practical constraint of causality to be

imposed on the controller used in the case of random excitation. It would be

interesting to find the transfer function of the optimal controller constrained

by causality and to compare its performance to the acausal controller in

chapter 4 to see what is lost in performance as a result of the constraint.

It would also be useful to extend the theory of controlling a single

transient pulse given in chapter 5 to control a sequence of random pulses.

The controller need not be bruited to only one or two control pulses. If many
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pulses are used and the time between the control pulses is fixed,this problem

is exactly a discretized version of that of finding the optimal controller

constrained by causality for random excitation mentioned previously.

Also itwould be desirable to implement and verify the controllers found

in this work digitallyin an experimental arrangement. It is not necessary,

though, to use the controllers found in this work. Adaptive controllers could

be used to control the vibrations, and their performance compared with the

theoretical limits presented in this thesis.
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Appendix A

THOUGHTS ON CAUSAL CONTROL OF A

STATIONARY RANDOM PROCESS

In chapter 4, an optimal controller was found to control white noise

excitation. The disadvantage of the controller was that it was acausal and

required future values of the noise excitation in order to be implemented. In

some applications, a good estimate of future excitation values may exist, but

for a completely general application, the controller for random excitation

must be constrained to using only past values of the random noise excitation.

Unfortunately, the constraint of causality makes the ideal controller

considerably more difficult to find. The calculus of variations is employed

here to find an integral equation that the constrained controller must satisfy.

Both the analytical and numerical solution of this equation are then

•discussed.

Imposition of the constraint of causality is possible in both the frequency

and time domains. In the frequency domain, causality causes the real and

imaginary part of the transfer function to be dependent. If the real part is

known, the imaginary part can be found by the relation 21

to r'- , R(to')

1(o3) = _J_ do) -_-_o 2 (AI)

One way to satisfy the constraint of causality is to let H(o)) = R (o))+jI(o)) in

equation (56), where R(o)) and I(o)) are the real and imaginary part of H(o)),

respectively. Now use the integral relation in equation (A1) to get the cost

functional W in terms of only one independent function. This results in
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[ "+J0)¢ do,"R(_')]
+ d0)B_(0)) R(0)) rt .L.. 0)"2_ 0):J

[+ do)B2(0))R(0))--gj_..0)'2-0)=J

"',oo
which is a very complicated integral equation.

In the time domain, causality is more simply enforced by requiring h (t),

the impulse response of the controller, to be zero for t < 0. This affects the

limits in equation (53) such that

_F= b,(0)+ 2 £"dx h (x)b2(x) + £'dx dx" h (x)b,(x - x')h (x') (A2)

Now the problem is in the time domain rather than the frequency domain.

Unfortunately, the quantity to minimize is still an integral equation, but not

as complicated as was the frequency domain equation.

An impulse response function h(t) is sought that will minimize _P, which

is by definition, always a positive quantity. This is a problem in the calculus

of variations n. If a minimum exists, a necessary condition is that it be at a

stationary point of W. Finding a stationary point is not sufficient however, to

say that the point represents a minimum or maximum, but fortunately in

many physically motivated problems, it will be obvious. If only one

stationary point exists for W, then it must be the minimum since a controller

could always be chosen to make W larger. To find a stationary point, first

calculate the variation of q_ in equation (A2) with respect to the controller
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h(x):

_=2f:dxb2(x)8_h +f__dxd_'{b3(x-_')h(_')8,h + b3(x- _")h(_)5<h} (A3)

and rearrange to give

5W = 2 £'dx b:(x)5,h +£'d'cdx'{b3(x-x')+b3(x'-x)}h('g)5,h (A4)

Looking back at equation (54), b3(x) is

;:b3(x) = d'tl he(x, xOhc(x, *t - x) (A5)

Now use x== x, - x to change the variable of integration resulting in

52 f"bs(x) = x2 dx hc(x, "c2 + x)hc(x, x2) (A6)
x I

which, when compared with equation (AS), clearly reveals that b3(x) = b3(-x).

Because b3(x) is an even function, equation (A4) can be rewritten as

5_ = 2 f_dx{b2('t) + £"d'r" b3(x- x')h(x')t S,h (A7)

A stationary point is defined by 8W ----0. Since 8,h is a function that can

be chosen arbitrarily to prevent the integration from being zero, the

integrand itself must everywhere be identically zero. This results in the

Euler, or governing, equation:

b=(x) + £"dx' b,(x - x')h (x') = 0 (A8)

This particular integral equation is of a very common form known as the

Wiener-Hopf integral equation. If the controller were not restricted to t > 0, it
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could be solved by utilizingthe convolution theorem of the Fourier transform

which gives the same result as already found for the unconstrained random

controller in chapter 4.

It may seem that the properties of the one-sided Laplace transform could

be utilized to give

B (s)
H(s) = ---- (A9)

B3(S)

but this is not possible since the convolution theorem is defined only for

functions that are zero for t < 0; b3(x) is even, so the Laplace transform cannot

be used. Of course the integral in equation (A8) could be separated into two

one-sided integrals but then h (_) is coupled with limits and an algebraic

solution such as equation (A9) is not possible.

An analytical method for solving equation (A8), which requires the

Fourier transform of the kernel b3(x) to be factored into two functions that are

analytic in the leR and right half-planes, respectively, is presented by

Krein 2_. Factoring the product of two summations over the modes would be a

very tedious process, but it may be possible to utilize a computer program

that does symbolic manipulation, such as Macsyma 24, to aid in this task.

A straightforward approach to obtain a numerical solution is to

discretize equation (A8) and solve the resulting simultaneous linear system of

equations for discrete values of the desired controller function. Discretizing

equation (A8) yields

N

b2(kA)+A _'. b3(kA-nA)h(nA)=O k =0, 1..... N (AI0)
nm0
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The functions b2(_) and b3(_) are presented in closed form in appendix B. The

solution to equation (A10) yields the impulse response of the controller.

Substituting this into a discrete version of equation (A2) gives the

approximate performance of the controller:

N N N

_=b_(0)+2A _ h(nA)b2(nA)+A 2 _, _, h(nA)b3(nA-kA)h(kA) (All)
n-O n-Ok=O

Unfortunately, the solution of the discrete system created questions rather

than answers. The discrete values of the impulse response h(t) had large

oscillations at t = 0 and t = N_ The oscillations became more tightly spaced

and stronger as the stepsize A was decreased. Substituting the result into

equation (All) indicated a large reduction in the beam vibration. To check

the reduction of displacement in the time domain, the beam equation was

discretized and control simulated. After control, the amplitude of the

displacement increased! If the oscillations were removed from the ends of the

discrete impulse response, a reduction in displacement was observed. This

would seem to indicate that the oscillations were not part of the actual

solution, but if they were eliminated, then other problems occurred. As an

example, rnln_miT.ing the beam vibration globally did not reduce the global

cost function as much as minimizing locally did. This makes absolutely no

sense at all. This may be the result of the determinant of the system matrix

rapidly approaching zero as N increases, although no thorough explanation

could be found.

The problem of finding the optimal causal controller has been briefly

discussed. This is a problem which contains many subtleties, and further

research is necessary before these subtleties can be fully understood.
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Appendix B

RELEVANT INTEGRALS

The closed form solution of several integrals is needed for plotting the

solutions found in the text. The first is

S...(t,, t2) = fo*'dx h.(x - t,)h._('c - t2) t2>t_>O

where
_(On _t °

h.(t) =--e smcoa..tu.(t)
COd,n

This can be solved to give

S,_(t I, tz) = b,_ { cos coa._t, cos _a._t:X_

-cos co_,.t_ sin cod,..hY...

-sin coa..t_ cos coa,,.hY,..

+ sinco_..t,sio,co_..t:Z.}

where 1 --%_U2- q)
b,,.. - e

OO#,.cod,,.

and (%,. + coa,..) sin(%,. + _d,,.)h- (CO._ + CO.,_) COS(COd,.+ COd,,.)t2
x.-

2{(co._ + co.,_)2 + (coa.. + coa.,.) r}

(coa,.- %,..) sin(co_..- co_..)t_- (co._ + co._) cos(co_,.- co_,.)t_

2{(co.r,.+ _r..)' + (co_,.- co,,.)_}

(co._ + co._) sin(%,. - %,..)h + (%.. - co_..)cos(cod..- co_..)t2
r_-

2{(co._ + o.,_.,.) 2+ (cod..- coa,,.) z}

(co._ + co.,_) sin(%,. + %,,.)h - (%,. + co_,,.) cos(co_,. + %,,.)r2
+

2{(co._ + co,._)2 + (cod,. + coa,,.) 2}
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(taa.. + toa..) sin(rod.. + toa..)t2 - (o_._ + to._) cos(c%. + toa..)t2

2{(tong+co._) _+ (co_..+_o_,.)_}

Another integral needed throughout the text is

_dxc...(x,, x9 = #.(x)_.(x)

where ¢.(x)= sinnr_x

The solutionis

sin(n - m)_2 - sin(n - m)_,

C"'(x"x2) = 27¢(n - m)

n = 1,2,3 ....

sin(n + m)_2 - sin(n + m)_,

2_(n + m)

1 1

= _ (x 2 - x t) - _ (sin 2n _.x2 - sin 2n 7r.x,)
n=lFl

n #m
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